Home
Search results “Data analysis with r studio”
Basic Data Analysis in RStudio
 
25:56
This clip explains how to produce some basic descrptive statistics in R(Studio). Details on http://eclr.humanities.manchester.ac.uk/index.php/R_Analysis. You may also be interested in how to use tidyverse functionality for basic data analysis: https://youtu.be/xngavnPBDO4
Views: 143564 Ralf Becker
Introduction to Data Science with R - Data Analysis Part 1
 
01:21:50
Part 1 in a in-depth hands-on tutorial introducing the viewer to Data Science with R programming. The video provides end-to-end data science training, including data exploration, data wrangling, data analysis, data visualization, feature engineering, and machine learning. All source code from videos are available from GitHub. NOTE - The data for the competition has changed since this video series was started. You can find the applicable .CSVs in the GitHub repo. Blog: http://daveondata.com GitHub: https://github.com/EasyD/IntroToDataScience I do Data Science training as a Bootcamp: https://goo.gl/OhIHSc
Views: 1040014 David Langer
R Studio: Importing & Analyzing Data
 
07:22
Tutorial on importing data into R Studio and methods of analyzing data.
Views: 198082 MrClean1796
Data Analysis in R
 
27:20
Here are two examples of numeric and non numeric data analyses. Both files are obtained from infochimps open access online database.
Views: 43608 Ani Aghababyan
Exploratory Data Analysis in RStudio with ggplot
 
11:02
In this video I show you how to quickly and easily do some exploratory data analysis with graphs in RStudio using ggplot and the tidyverse library. I start by showing you how to load in the tidyverse library and be sure to be careful about spelling and uppercase and lowercase letters as R is very picky with that. Then I load in the data set and I use ggplot to create some cool graphs based on registered and new (casual) users. The data set I use for this is the bike sharing data set which is available from the University of California Irving. This is a public domain and freely available data set. But I could've used any data set it would've mattered. I show you a basic graph and then I add a color variation to it so we can start drawing some insights. From the final graph I show you it's you to see that there's a big area where there's a lot of registered or subscriber usage and then there is also an area with lower temperatures that is more predominantly new users. With this data we can then see two opportunities - obviously the large one is to market to new users during the main season for bike sharing (warmer weather). And we can also see the opportunity to increase registered users during the off-season (cold weather - i.e. below 40 degrees or so. This is not a complete everything tutorial on exploratory data analysis and data science. I just want to show you how easy and quick it is with RStudio, ggplot and a few formulas which are easy to use to get meaningful data and to start drawing valuable and reproducible insights. I hope you found this video interesting and helpful. Please take a moment to subscribe, like and leave me a comment. I love to hear from my viewers and subscribers. Let me know how this worked for you or if you took it on a different angle or use a different data set. Thanks for watching. God bless.
Views: 3696 Tech Know How
R Introduction: Data Analysis and Plotting
 
14:15
This video uses a complex, yet not to large, data set to conduct a simple manipulation of data in R and RStudio. We will introduce data frames, matrices and variables. It demonstrates how to plot charts in R and how to gradually build them out of basic visual elements. The explanation will carefully avoid more complex statistical concepts. The data for this lesson can be obtained from (note different file name): * http://visanalytics.org/youtube-rsrc/r-data/Vic-2013-LGA-Profiles-NoPc.csv The source for the R code of this video can be found here (with some small discrepancies): * http://visanalytics.org/youtube-rsrc/r-intro/Demo-A2-Basic-Data-Analysis-and-Plotting.r Videos in data analytics and data visualization by Jacob Cybulski, visanalytics.org.
Views: 27449 ironfrown
R programming for beginners – statistic with R (t-test and linear regression) and dplyr and ggplot
 
15:49
R programming for beginners - This video is an introduction to R programming. I have another channel dedicated to R teaching: https://www.youtube.com/c/rprogramming101 In this video I provide a tutorial on some statistical analysis (specifically using the t-test and linear regression). I also demonstrate how to use dplyr and ggplot to do data manipulation and data visualisation. Its R programming for beginners really and is filled with graphics, quantitative analysis and some explanations as to how statistics work. If you’re a statistician, into data science or perhaps someone learning bio-stats and thinking about learning to use R for quantitative analysis, then you’ll find this video useful. Importantly, R is free. If you learn R programming you’ll have it for life. This video was sponsored by the University of Edinburgh. Find out more about their programmes at http://edin.ac/2pTfis2 This channel focusses on global health and public health - so please consider subscribing if you’re someone wanting to make the world a better place – I’d love to you join this community. I have videos on epidemiology, study design, ethics and many more.
R: Exploratory Data Analysis (EDA), Multivariate Analysis
 
29:51
One of the first steps to data analysis is to perform Exploratory Data Analysis. In this video we go over the basics of multivariate data analysis, or analyzing the relationship between variables Here's the dataset used in this video: https://drive.google.com/open?id=0B67hcgV97X0mbnRYNzhYLU53X2c
Views: 9672 James Dayhuff
Transforming Data - Data Analysis with R
 
03:01
This video is part of an online course, Data Analysis with R. Check out the course here: https://www.udacity.com/course/ud651. This course was designed as part of a program to help you and others become a Data Analyst. You can check out the full details of the program here: https://www.udacity.com/course/nd002.
Views: 59630 Udacity
Exploratory data analysis 1
 
27:40
Three R scripts showing some simple exploratory data analyses in R: contingency tables, histograms, boxplots/dotplots, and groupwise means.
Views: 31094 James Scott
Rstudio - an introduction for data analysis
 
24:25
RStudio for beginners doing data analysis -R environment - creating objects -loading data (a txt file) - saving your code -How to refer to variables | plots for univariate continuous variables (histogram, boxplot) -Comments with # - Altering a commands default settings (eg 1 sample t-test)
Views: 7424 Phil Chan
Introduction to Text Analytics with R: Overview
 
30:38
The overview of this video series provides an introduction to text analytics as a whole and what is to be expected throughout the instruction. It also includes specific coverage of: – Overview of the spam dataset used throughout the series – Loading the data and initial data cleaning – Some initial data analysis, feature engineering, and data visualization About the Series This data science tutorial introduces the viewer to the exciting world of text analytics with R programming. As exemplified by the popularity of blogging and social media, textual data if far from dead – it is increasing exponentially! Not surprisingly, knowledge of text analytics is a critical skill for data scientists if this wealth of information is to be harvested and incorporated into data products. This data science training provides introductory coverage of the following tools and techniques: – Tokenization, stemming, and n-grams – The bag-of-words and vector space models – Feature engineering for textual data (e.g. cosine similarity between documents) – Feature extraction using singular value decomposition (SVD) – Training classification models using textual data – Evaluating accuracy of the trained classification models Kaggle Dataset: https://www.kaggle.com/uciml/sms-spam-collection-dataset The data and R code used in this series is available here: https://code.datasciencedojo.com/datasciencedojo/tutorials/tree/master/Introduction%20to%20Text%20Analytics%20with%20R -- Learn more about Data Science Dojo here: https://hubs.ly/H0hz5_y0 Watch the latest video tutorials here: https://hubs.ly/H0hz61V0 See what our past attendees are saying here: https://hubs.ly/H0hz6-S0 -- At Data Science Dojo, we believe data science is for everyone. Our in-person data science training has been attended by more than 4000+ employees from over 800 companies globally, including many leaders in tech like Microsoft, Apple, and Facebook. -- Like Us: https://www.facebook.com/datasciencedojo Follow Us: https://twitter.com/DataScienceDojo Connect with Us: https://www.linkedin.com/company/datasciencedojo Also find us on: Google +: https://plus.google.com/+Datasciencedojo Instagram: https://www.instagram.com/data_science_dojo Vimeo: https://vimeo.com/datasciencedojo
Views: 75924 Data Science Dojo
Introduction to R Data Analysis: Data Cleaning
 
01:04:00
Data Cleaning and Dates using lubridate, dplyr, and plyr
Views: 48861 John Muschelli
Introduction to Data Science with R - Data Analysis Part 3
 
55:33
Part 3 in a in-depth hands-on tutorial introducing the viewer to Data Science with R programming. The video provides end-to-end data science training, including data exploration, data wrangling, data analysis, data visualization, feature engineering, and machine learning. All source code from videos are available from GitHub. NOTE - The data for the competition has changed since this video series was started. You can find the applicable .CSVs in the GitHub repo. Blog: http://daveondata.com GitHub: https://github.com/EasyD/IntroToDataScience I do Data Science training as a Bootcamp: https://goo.gl/OhIHSc
Views: 67569 David Langer
RStudio Layout - Data Analysis with R
 
02:23
This video is part of an online course, Data Analysis with R. Check out the course here: https://www.udacity.com/course/ud651. This course was designed as part of a program to help you and others become a Data Analyst. You can check out the full details of the program here: https://www.udacity.com/course/nd002.
Views: 16369 Udacity
R Tutorial For Beginners | R Programming Tutorial l R Language For Beginners | R Training | Edureka
 
01:33:00
( R Training : https://www.edureka.co/r-for-analytics ) This Edureka R Tutorial (R Tutorial Blog: https://goo.gl/mia382) will help you in understanding the fundamentals of R tool and help you build a strong foundation in R. Below are the topics covered in this tutorial: 1. Why do we need Analytics ? 2. What is Business Analytics ? 3. Why R ? 4. Variables in R 5. Data Operator 6. Data Types 7. Flow Control 8. Plotting a graph in R Check out our R Playlist: https://goo.gl/huUh7Y Subscribe to our channel to get video updates. Hit the subscribe button above. #R #Rtutorial #Ronlinetraining #Rforbeginners #Rprogramming How it Works? 1. This is a 5 Week Instructor led Online Course, 30 hours of assignment and 20 hours of project work 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. At the end of the training you will be working on a real time project for which we will provide you a Grade and a Verifiable Certificate! - - - - - - - - - - - - - - - - - About the Course edureka's Data Analytics with R training course is specially designed to provide the requisite knowledge and skills to become a successful analytics professional. It covers concepts of Data Manipulation, Exploratory Data Analysis, etc before moving over to advanced topics like the Ensemble of Decision trees, Collaborative filtering, etc. During our Data Analytics with R Certification training, our instructors will help you: 1. Understand concepts around Business Intelligence and Business Analytics 2. Explore Recommendation Systems with functions like Association Rule Mining , user-based collaborative filtering and Item-based collaborative filtering among others 3. Apply various supervised machine learning techniques 4. Perform Analysis of Variance (ANOVA) 5. Learn where to use algorithms - Decision Trees, Logistic Regression, Support Vector Machines, Ensemble Techniques etc 6. Use various packages in R to create fancy plots 7. Work on a real-life project, implementing supervised and unsupervised machine learning techniques to derive business insights - - - - - - - - - - - - - - - - - - - Who should go for this course? This course is meant for all those students and professionals who are interested in working in analytics industry and are keen to enhance their technical skills with exposure to cutting-edge practices. This is a great course for all those who are ambitious to become 'Data Analysts' in near future. This is a must learn course for professionals from Mathematics, Statistics or Economics background and interested in learning Business Analytics. - - - - - - - - - - - - - - - - Why learn Data Analytics with R? The Data Analytics with R training certifies you in mastering the most popular Analytics tool. "R" wins on Statistical Capability, Graphical capability, Cost, rich set of packages and is the most preferred tool for Data Scientists. Below is a blog that will help you understand the significance of R and Data Science: Mastering R Is The First Step For A Top-Class Data Science Career Having Data Science skills is a highly preferred learning path after the Data Analytics with R training. Check out the upgraded Data Science Course For more information, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free). Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Telegram: https://t.me/edurekaupdates
Views: 535484 edureka!
Read and Subset Data - Data Analysis with R
 
03:51
This video is part of an online course, Data Analysis with R. Check out the course here: https://www.udacity.com/course/ud651. This course was designed as part of a program to help you and others become a Data Analyst. You can check out the full details of the program here: https://www.udacity.com/course/nd002.
Views: 9955 Udacity
Business Analytics With R | Data Analytics with R | Analytics with R | Programming with R | Edureka
 
01:36:12
This tutorial will deep dive into data analysis using 'R' language. This video is specially designed for beginners intending to get into the analysis domain. To learn more about R, click here: http://goo.gl/uHfGbN The topics related to ‘R’ language are extensively covered in our ‘Mastering Data Analytics with R’ course. For more information, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free).
Views: 15410 edureka!
RQDA 1. Introduction of Qualitative Data Analysis with RQDA
 
04:48
Learn basic level qualitative data analysis with RQDA. If you face difficulty in installing R and R studio watch following clip on youtube: https://youtu.be/aSGujXXLu-U
Views: 2431 Atiq Rehman
Analyze European survey data statistics in R (Rstudio)
 
13:09
Prepare, clean, wrangle, and analyze political science data in R. Code and walkthrough for students or beginners learning quantitative, statistical analysis in R. This shows you how to do common data cleaning tasks, make a plot of country averages over time, and estimate a basic linear regression model with Eurobarometer data. How important is religion in different European countries? Which variables predict the probability individuals will vote in the European Parliament elections? Data for this script can be downloaded here: https://www.dropbox.com/s/5bdhel8l7c5r59z/eurobarometer_trends.dta?dl=0 The script can be found here: https://gist.github.com/jmrphy/9020745 Newsletter: https://tinyletter.com/jmrphy Blog: http://jmrphy.net/blog Twitter: http://twitter.com/jmrphy Podcast: http://jmrphy.libsyn.com/ Facebook: https://www.facebook.com/otherlifenow/ Periscope: https://www.pscp.tv/jstnmrphy Instagram: https://www.instagram.com/jstnmrphy/
Views: 4411 Justin Murphy
R Data Analysis Solution: Generate Reports of Data Analysis with R Markdown & knitR | packtpub.com
 
11:16
This playlist/video has been uploaded for Marketing purposes and contains only selective videos. For the entire video course and code, visit [http://bit.ly/2v1WJoT]. R Markdown provides a simple syntax to define analysis reports. Based on such a report definition, knitr can generate reports in HTML, PDF, Microsoft Word format, and several presentation formats. • Create a new R Markdown document • Generate an HTML document based on the markdown file • Generate a PDF or Word document For the latest Big Data and Business Intelligence video tutorials, please visit http://bit.ly/1HCjJik Find us on Facebook -- http://www.facebook.com/Packtvideo Follow us on Twitter - http://www.twitter.com/packtvideo
Views: 4274 Packt Video
Install RStudio on Windows - Data Analysis with R
 
02:12
This video is part of an online course, Data Analysis with R. Check out the course here: https://www.udacity.com/course/ud651. This course was designed as part of a program to help you and others become a Data Analyst. You can check out the full details of the program here: https://www.udacity.com/course/nd002.
Views: 21493 Udacity
4.3 Introduction to data.table (Exploratory Data Analysis with data.table)
 
08:19
See here for the course website, including a transcript of the code and an interactive quiz for this segment: http://dgrtwo.github.io/RData/lessons/lesson4/segment3/
R: Exploratory Data Analysis (EDA), Univariate analysis
 
30:01
One of the first steps to data analysis is to perform Exploratory Data Analysis. In this video we go over the basics of univariate data analysis, or analyzing each variable to better get to know our data. Here's the dataset used in this video: https://drive.google.com/open?id=0B67hcgV97X0mbnRYNzhYLU53X2c
Views: 5811 James Dayhuff
Introduction to Data Science with R - Data Analysis Part 2
 
59:48
Part 2 in a in-depth hands-on tutorial introducing the viewer to Data Science with R programming. The video provides end-to-end data science training, including data exploration, data wrangling, data analysis, data visualization, feature engineering, and machine learning. All source code from videos are available from GitHub. NOTE - The data for the competition has changed since this video series was started. You can find the applicable .CSVs in the GitHub repo. Blog: http://daveondata.com GitHub: https://github.com/EasyD/IntroToDataScience I do Data Science training as a Bootcamp: https://goo.gl/OhIHSc
Views: 150159 David Langer
Social Network Analysis with R | Examples
 
26:25
Social network analysis with several simple examples in R. R file: https://goo.gl/CKUuNt Data file: https://goo.gl/Ygt1rg Includes, - Social network examples - Network measures - Read data file - Create network - Histogram of node degree - Network diagram - Highlighting degrees & different layouts - Hub and authorities - Community detection R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 24815 Bharatendra Rai
R vs Python | Best Programming Language for Data Science and Analysis | Edureka
 
07:19
***** Python Online Training: https://www.edureka.co/python ***** ***** R Online Training: https://www.edureka.co/r-for-analytics ***** This Edureka video on R vs Python provides you with a short and crisp description of the top two languages used in Data Science and Data Analytics i.e. Python and R (Blog:http://bit.ly/2ClaowR). You will also see the head to head comparison between the two on various parameters and learn why one is preferred over the other in certain aspects. Following topics are covered in the video: 1:30 Various Aspects of Comparison 1:40 Speed 1:56 Legacy 2:13 Code 2:28 Databases 2:45 Practical Agility 3:10 Trends 3:31 Salary 4:25 Syntax Subscribe to our Edureka YouTube channel to get video updates: https://goo.gl/6ohpTV --------------------------------------------------------------------------------------------- Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka ------------------------------------------------------------------------------------------------ #PythonVsR #Python #R #Pythononlinetraining #Javaonlinetraining ----------------------------------------------------------------- For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 94783 edureka!
R Markdown Documents - Data Analysis with R
 
02:33
This video is part of an online course, Data Analysis with R. Check out the course here: https://www.udacity.com/course/ud651. This course was designed as part of a program to help you and others become a Data Analyst. You can check out the full details of the program here: https://www.udacity.com/course/nd002.
Views: 16812 Udacity
Intro to Data Visualization with R & ggplot2
 
01:11:15
The R programming language is experiencing rapid increases in popularity and wide adoption across industries. This popularity is due, in part, to R’s rich and powerful data visualization capabilities. While tools like Excel, Power BI, and Tableau are often the go-to solutions for data visualizations, none of these tools can compete with R in terms of the sheer breadth of, and control over, crafted data visualizations. As an example, R’s ggplot2 package provides the R programmer with dozens of print-quality visualizations – where any visualization can be heavily customized with a minimal amount of code. In this webinar Dave Langer will provide an introduction to data visualization with the ggplot2 package. The focus of the webinar will be using ggplot2 to analyze your data visually with a specific focus on discovering the underlying signals/patterns of your business. Attendees will learn how to: • Craft ggplot visualizations, including customization of rendered output. • Choose optimal visualizations for the type of data and the nature of the analysis at hand. • Leverage ggplot2’s powerful segmentation capabilities to achieve “visual drill-in of data”. • Export ggplot2 visualizations from RStudio for use in documents and presentations. Repository: https://code.datasciencedojo.com/datasciencedojo/tutorials/tree/master/Introduction%20to%20Data%20Visualization%20with%20R%20and%20ggplot2 -- Learn more about Data Science Dojo here: https://hubs.ly/H0hz6V50 Watch the latest video tutorials here: https://hubs.ly/H0hz6W80 See what our past attendees are saying here: https://hubs.ly/H0hz5ZJ0 -- Like Us: https://www.facebook.com/datasciencedojo/ Follow Us: https://twitter.com/DataScienceDojo Connect with Us: https://www.linkedin.com/company/data-science-dojo Also find us on: Instagram: https://www.instagram.com/data_science_dojo/ Vimeo: https://vimeo.com/datasciencedojo #rtutorial #datavisualization
Views: 115744 Data Science Dojo
Making a panel dataset in R studio
 
11:10
Hello researchers, This video will help you making a panel dataset in R from cross-section and time-series data available.
Views: 13224 Sarveshwar Inani
R Programming For Beginners | R Language Tutorial | R Tutorial For Beginners | Edureka
 
01:10:56
( R Training : https://www.edureka.co/r-for-analytics ) This Edureka R Programming Tutorial For Beginners (R Tutorial Blog: https://goo.gl/mia382) will help you in understanding the fundamentals of R and will help you build a strong foundation in R. Below are the topics covered in this tutorial: 1. Variables 2. Data types 3. Operators 4. Conditional Statements 5. Loops 6. Strings 7. Functions Check out our R Playlist: https://goo.gl/huUh7Y Subscribe to our channel to get video updates. Hit the subscribe button above. #R #Rtutorial #Ronlinetraining #Rforbeginners #Rprogramming How it Works? 1. This is a 5 Week Instructor led Online Course, 30 hours of assignment and 20 hours of project work 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. At the end of the training you will be working on a real time project for which we will provide you a Grade and a Verifiable Certificate! - - - - - - - - - - - - - - - - - About the Course Edureka's Data Analytics with R training course is specially designed to provide the requisite knowledge and skills to become a successful analytics professional. It covers concepts of Data Manipulation, Exploratory Data Analysis, etc before moving over to advanced topics like the Ensemble of Decision trees, Collaborative filtering, etc. During our Data Analytics with R Certification training, our instructors will help you: 1. Understand concepts around Business Intelligence and Business Analytics 2. Explore Recommendation Systems with functions like Association Rule Mining , user-based collaborative filtering and Item-based collaborative filtering among others 3. Apply various supervised machine learning techniques 4. Perform Analysis of Variance (ANOVA) 5. Learn where to use algorithms - Decision Trees, Logistic Regression, Support Vector Machines, Ensemble Techniques etc 6. Use various packages in R to create fancy plots 7. Work on a real-life project, implementing supervised and unsupervised machine learning techniques to derive business insights - - - - - - - - - - - - - - - - - - - Who should go for this course? This course is meant for all those students and professionals who are interested in working in analytics industry and are keen to enhance their technical skills with exposure to cutting-edge practices. This is a great course for all those who are ambitious to become 'Data Analysts' in near future. This is a must learn course for professionals from Mathematics, Statistics or Economics background and interested in learning Business Analytics. - - - - - - - - - - - - - - - - Why learn Data Analytics with R? The Data Analytics with R training certifies you in mastering the most popular Analytics tool. "R" wins on Statistical Capability, Graphical capability, Cost, rich set of packages and is the most preferred tool for Data Scientists. Below is a blog that will help you understand the significance of R and Data Science: Mastering R Is The First Step For A Top-Class Data Science Career Having Data Science skills is a highly preferred learning path after the Data Analytics with R training. Check out the upgraded Data Science Course For more information, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free). Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Telegram: https://t.me/edurekaupdates
Views: 425206 edureka!
Time Series In R | Time Series Forecasting | Time Series Analysis | Data Science Training | Edureka
 
34:00
( Data Science Training - https://www.edureka.co/data-science ) In this Edureka YouTube live session, we will show you how to use the Time Series Analysis in R to predict the future! Below are the topics we will cover in this live session: 1. Why Time Series Analysis? 2. What is Time Series Analysis? 3. When Not to use Time Series Analysis? 4. Components of Time Series Algorithm 5. Demo on Time Series For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 90331 edureka!
Transforming Data - Data Analysis with R
 
02:42
This video is part of an online course, Data Analysis with R. Check out the course here: https://www.udacity.com/course/ud651. This course was designed as part of a program to help you and others become a Data Analyst. You can check out the full details of the program here: https://www.udacity.com/course/nd002.
Views: 15023 Udacity
Sentiment Analysis in R | Sentiment Analysis of Twitter Data | Data Science Training | Edureka
 
46:16
( Data Science Training - https://www.edureka.co/data-science ) This Sentiment Analysis Tutorial shall give you a clear understanding as to how a Sentiment Analysis machine learning algorithm works in R. Towards the end, we will be streaming data from Twitter and will do a comparison between two football teams - Barcelona and Real Madrid (El Clasico Sentiment Analysis) Below are the topics covered in this tutorial: 1) What is Machine Learning? 2) Why Sentiment Analysis? 3) What is Sentiment Analysis? 4) How Sentiment Analysis works? 5) Sentiment Analysis - El Clasico Demo 6) Sentiment Analysis - Use Cases Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #SentimentAnalysis #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 33755 edureka!
Frequency Polygons - Data Analysis with R
 
03:17
This video is part of an online course, Data Analysis with R. Check out the course here: https://www.udacity.com/course/ud651. This course was designed as part of a program to help you and others become a Data Analyst. You can check out the full details of the program here: https://www.udacity.com/course/nd002.
Views: 10081 Udacity
Getting started with Python and R for Data Science
 
29:40
In this video tutorial, we will take you through some common Python and R packages used for machine learning and data analysis, and go through a simple linear regression model. Also, we will help you set up Python and R on your Windows/Mac/Linux machine, run your code locally and push your code to a Github repository. - Installing Python on Windows: 1:09 - Installing R on Windows: 4:16 - Installing Python on Mac: 5:39 - Installing R on Mac: 8:10 - Installing Python on Linux: 8:41 - Installing R on Linux: 9:48 - Simple linear regression model explanation: 10:13 - Simple linear regression model in Python: 11:59 - Simple linear regression model in R: 21:01 - Pushing code to Github Repository: 25:26 -- All commands, scripts, data and URLs to software can be found here: https://code.datasciencedojo.com/rebeccam/tutorials/tree/master/Getting%20Started Programs/Software · python.org/downloads · bootstrap.pypa.io/get-pip.py · cran.r-project.org/bin/windows/base · https://www.rstudio.com · http://gitforwindows.org Text Editor: https://notepad-plus-plus.org/download -- Learn more about Data Science Dojo here: https://hubs.ly/H0hDbbw0 Watch the latest video tutorials here: https://hubs.ly/H0hD9Hm0 See what our past attendees are saying here: https://hubs.ly/H0hD9Hn0 -- At Data Science Dojo, we believe data science is for everyone. Our in-person data science training has been attended by more than 4000+ employees from over 830 companies globally, including many leaders in tech like Microsoft, Apple, and Facebook. -- Like Us: https://www.facebook.com/datasciencedojo Follow Us: https://twitter.com/DataScienceDojo Connect with Us: https://www.linkedin.com/company/datasciencedojo Also find us on: Instagram: https://www.instagram.com/data_science_dojo Vimeo: https://vimeo.com/datasciencedojo #datasciencewithr #datasciencewithpython #datascienceforbeginners
Views: 6695 Data Science Dojo
Data Mining using R | Data Mining Tutorial for Beginners | R Tutorial for Beginners | Edureka
 
36:36
( R Training : https://www.edureka.co/r-for-analytics ) This Edureka R tutorial on "Data Mining using R" will help you understand the core concepts of Data Mining comprehensively. This tutorial will also comprise of a case study using R, where you'll apply data mining operations on a real life data-set and extract information from it. Following are the topics which will be covered in the session: 1. Why Data Mining? 2. What is Data Mining 3. Knowledge Discovery in Database 4. Data Mining Tasks 5. Programming Languages for Data Mining 6. Case study using R Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #LogisticRegression #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free). Website: https://www.edureka.co/data-science Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. " Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 80780 edureka!
Gene Expression analysis using R
 
17:34
The video displays gene expression data analysis using R. The code is available at github https://github.com/abhik1368/dsdht/tree/master/Microarray%20Data%20Analysis The code is available at IntroMicroarray.R
Views: 29098 Abhik Seal
Learning Data Analysis with R : Introducing the Raster Format | packtpub.com
 
05:07
This playlist/video has been uploaded for Marketing purposes and contains only selective videos. For the entire video course and code, visit [http://bit.ly/2mIPNJq]. Raster data is fundamentally different from vector data, since its values refer to specific areas (cells) and no single locations. This video will clearly explain this difference and teach users how to import this data in R. • Explain what raster data is • Importing with rgdal • Introducing the raster package For the latest Big Data and Business Intelligence video tutorials, please visit http://bit.ly/1HCjJik Find us on Facebook -- http://www.facebook.com/Packtvideo Follow us on Twitter - http://www.twitter.com/packtvideo
Views: 2712 Packt Video
Introduction to Cluster Analysis with R - an Example
 
18:11
Provides illustration of doing cluster analysis with R. R File: https://goo.gl/BTZ9j7 Machine Learning videos: https://goo.gl/WHHqWP Includes, - Illustrates the process using utilities data - data normalization - hierarchical clustering using dendrogram - use of complete and average linkage - calculation of euclidean distance - silhouette plot - scree plot - nonhierarchical k-means clustering Cluster analysis is an important tool related to analyzing big data or working in data science field. Deep Learning: https://goo.gl/5VtSuC Image Analysis & Classification: https://goo.gl/Md3fMi R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 114027 Bharatendra Rai
Advanced Analytics with R and SQL
 
59:22
R is the lingua franca of Analytics. SQL is the world’s most popular database language. What magic can you make happen by combining the power of R and SQL for Data Science and Advanced Analytics? Imagine the power of exploring, transforming, modeling, and scoring data at scale from the comfort of your favorite R environment. Now, imagine operationalizing the models you create directly in SQL Server, allowing your applications to use them from T-SQL, executed right where your data resides. Come learn how to build and deploy intelligent applications that combine the power of R, SQL Server, thousands of open source R extension packages, and high-performance implementations of the most popular machine learning algorithms at scale.
Introduction to Data Science with R - Exploratory Modeling 1
 
53:00
Part 4 in a in-depth hands-on tutorial introducing the viewer to Data Science with R programming. The video provides end-to-end data science training, including data exploration, data wrangling, data analysis, data visualization, feature engineering, and machine learning. All source code from videos are available from GitHub. NOTE - The data for the competition has changed since this video series was started. You can find the applicable .CSVs in the GitHub repo. Blog: http://daveondata.com GitHub: https://github.com/EasyD/IntroToDataScience I do Data Science training as a Bootcamp: https://goo.gl/OhIHSc
Views: 53963 David Langer
Why Use R? - R Tidyverse Reporting and Analytics for Excel Users
 
06:43
https://www.datastrategywithjonathan.com Free YouTube Playlist https://www.youtube.com/playlist?list=PL8ncIDIP_e6vQ0uQofezvKv3yPnL5Unxe From Excel To Big Data and Interactive Dashboard Visualizations in 5 Hours If you use Excel for any type of reporting or analytics then this course is for you. There are a lot of great courses teaching R for statistical analysis and data science that can sometimes make R seem a bit too advanced for every day use. Also since there are many different ways of using R that can often add to the confusion. The reality is that R can be used to make your every day reporting analytics that you do in Excel much faster and easier without requiring any complex statistical techniques while at the same time giving you a solid foundation to expand into those areas if you so wish. This course uses the Tidyverse standards for using R which provides a single, comprehensive and easy to understand method for using R without complicating things via multiple methods. It's designed to build upon the the skills you are already familiar with in Excel to shortcut your learning journey. If you're looking to learn Advanced Excel, Excel VBA or Databases then you need to check out this video series. In this videos series, I will show you how to use Microsoft Excel in different ways that will make you far more effective at working with data. I'm also going to expand your knowledge beyond Excel and show you tips, tricks, and tools from other top data analytics tools such as R Tidyverse, Python, Data Visualisation tools such as Tableau, Qlik View, Qlik Sense, Plotly, AWS Quick Sight and others. We'll start to touch on areas such as big data, machine learning, and cloud computing and see how you can develop your data skills to get involved in these exciting areas. Excel Formulas such as vlookup and sumifs are some of the top reasons for slow spreadsheets. Alternatives for vlookup include power query (Excel 2010 and Excel 2013) which has recently been renamed to Get and Transform in Excel 2016. Large and complex vlookup formulas can be also done very efficiently in R. Using the R Tidyverse libraries you can use the join functions to merge millions of records effortlessly. In comparison to Excel Vlookup, R Tidyverse Join can pull on multiple columns all at the same time. Microsoft Excel Power Query and R Tidyverse Joins are similar to the joins that you do in databases / SQL. The benefit that they have over relational databases such as Microsoft Access, Microsoft SQL Server, MySQL, etc is that they work in memory so they are actually much faster than a database. Also since they are part of an analytics tool instead of a database it is much faster and easier to build your analysis and queries all in the same tools. My very first R Tidyverse program was written to replace a Microsoft Access VBA solution which was becoming complicated and slow. Note that Microsoft Access is very limited in analytics functions and is missing things as simple as Median. Even though I had to learn R programming from scratch and completely re-write the Microsoft Access VBA solution it was so much easier and faster. It blew my mind how much easier R programming with R Tidyverse was than Microsoft Access VBA or Microsoft Excel VBA. If you have any VBA skills or are looking to learn VBA you should definitely checkout my videos on R Tidyverse. To understand why R Tidyverse is so much easier to work with than VBA. R Tidyverse is designed to work directly with your data. So If you want to add a calculated column that’s around one line of script. In Excel VBA, the VBA is used to control the DOM (Document Object Model). In Excel that means that you VBA controls things like cells and sheets. This means your VBA is designed to capture the steps that you would normally do manually in Microsoft Excel or Microsoft Access. VBA is not actually designed to work directly with your data. Note the most efficient path is to reduce the data pulled down from the database in the first place. This is referring to the amount of data you are pulling down from your data warehouse or data lake. It makes no sense to pull data from a data warehouse / data lake to pull into another database to query add joins / lookups to then pull it into Excel or other analysis tool. Often analyst build these intermediate databases because they either don’t have control of the data warehouse or they need to join additional information. All of these operations are done significantly faster in a tool such as R Tidyverse or Microsoft Excel Power Query.
Views: 17392 Jonathan Ng
Data Analysis with R : The Iris dataset
 
07:40
DragonflyStatistics.github.io | Data Analysis with R
Views: 6347 Dragonfly Statistics
Panel Data Models in R
 
09:47
Fixed Effects and Random Effects Models in R https://sites.google.com/site/econometricsacademy/econometrics-models/panel-data-models
Views: 87117 econometricsacademy
R tutorial: Introduction to cleaning data with R
 
05:18
Learn more about cleaning data with R: https://www.datacamp.com/courses/cleaning-data-in-r Hi, I'm Nick. I'm a data scientist at DataCamp and I'll be your instructor for this course on Cleaning Data in R. Let's kick things off by looking at an example of dirty data. You're looking at the top and bottom, or head and tail, of a dataset containing various weather metrics recorded in the city of Boston over a 12 month period of time. At first glance these data may not appear very dirty. The information is already organized into rows and columns, which is not always the case. The rows are numbered and the columns have names. In other words, it's already in table format, similar to what you might find in a spreadsheet document. We wouldn't be this lucky if, for example, we were scraping a webpage, but we have to start somewhere. Despite the dataset's deceivingly neat appearance, a closer look reveals many issues that should be dealt with prior to, say, attempting to build a statistical model to predict weather patterns in the future. For starters, the first column X (all the way on the left) appears be meaningless; it's not clear what the columns X1, X2, and so forth represent (and if they represent days of the month, then we have time represented in both rows and columns); the different types of measurements contained in the measure column should probably each have their own column; there are a bunch of NAs at the bottom of the data; and the list goes on. Don't worry if these things are not immediately obvious to you -- they will be by the end of the course. In fact, in the last chapter of this course, you will clean this exact same dataset from start to finish using all of the amazing new things you've learned. Dirty data are everywhere. In fact, most real-world datasets start off dirty in one way or another, but by the time they make their way into textbooks and courses, most have already been cleaned and prepared for analysis. This is convenient when all you want to talk about is how to analyze or model the data, but it can leave you at a loss when you're faced with cleaning your own data. With the rise of so-called "big data", data cleaning is more important than ever before. Every industry - finance, health care, retail, hospitality, and even education - is now doggy-paddling in a large sea of data. And as the data get bigger, the number of things that can go wrong do too. Each imperfection becomes harder to find when you can't simply look at the entire dataset in a spreadsheet on your computer. In fact, data cleaning is an essential part of the data science process. In simple terms, you might break this process down into four steps: collecting or acquiring your data, cleaning your data, analyzing or modeling your data, and reporting your results to the appropriate audience. If you try to skip the second step, you'll often run into problems getting the raw data to work with traditional tools for analysis in, say, R or Python. This could be true for a variety of reasons. For example, many common algorithms require variables to be arranged into columns and for missing values to be either removed or replaced with non-missing values, neither of which was the case with the weather data you just saw. Not only is data cleaning an essential part of the data science process - it's also often the most time-consuming part. As the New York Times reported in a 2014 article called "For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights", "Data scientists ... spend from 50 percent to 80 percent of their time mired in this more mundane labor of collecting and preparing unruly digital data, before it can be explored for useful nuggets." Unfortunately, data cleaning is not as sexy as training a neural network to identify images of cats on the internet, so it's generally not talked about in the media nor is it taught in most intro data science and statistics courses. No worries, we're here to help. In this course, we'll break data cleaning down into a three step process: exploring your raw data, tidying your data, and preparing your data for analysis. Each of the first three chapters of this course will cover one of these steps in depth, then the fourth chapter will require you to use everything you've learned to take the weather data from raw to ready for analysis. Let's jump right in!
Views: 37360 DataCamp
ggplot2 Tutorial | ggplot2 In R Tutorial | Data Visualization In R | R Training | Edureka
 
40:35
( R Training : https://www.edureka.co/r-for-analytics ) This "ggplot2 Tutorial" by Edureka is a comprehensive session on the ggplot2 in R. This tutorial will not only get you started with the ggplot2 package, but also make you an expert in visualizing data with the help of this package. This tutorial will comprise of these topics: 1) Base R Graphics 2) Grammar of Graphics 3) GGPLOT2 package Check out our R Playlist: https://goo.gl/huUh7Y Subscribe to our channel to get video updates. Hit the subscribe button above. #R #Rtutorial #Ronlinetraining #ggplot2 #ggplotinr How it Works? 1. This is a 5 Week Instructor led Online Course, 30 hours of assignment and 20 hours of project work 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. At the end of the training you will be working on a real time project for which we will provide you a Grade and a Verifiable Certificate! - - - - - - - - - - - - - - - - - About the Course edureka's Data Analytics with R training course is specially designed to provide the requisite knowledge and skills to become a successful analytics professional. It covers concepts of Data Manipulation, Exploratory Data Analysis, etc before moving over to advanced topics like the Ensemble of Decision trees, Collaborative filtering, etc. During our Data Analytics with R Certification training, our instructors will help you: 1. Understand concepts around Business Intelligence and Business Analytics 2. Explore Recommendation Systems with functions like Association Rule Mining , user-based collaborative filtering and Item-based collaborative filtering among others 3. Apply various supervised machine learning techniques 4. Perform Analysis of Variance (ANOVA) 5. Learn where to use algorithms - Decision Trees, Logistic Regression, Support Vector Machines, Ensemble Techniques etc 6. Use various packages in R to create fancy plots 7. Work on a real-life project, implementing supervised and unsupervised machine learning techniques to derive business insights - - - - - - - - - - - - - - - - - - - Who should go for this course? This course is meant for all those students and professionals who are interested in working in analytics industry and are keen to enhance their technical skills with exposure to cutting-edge practices. This is a great course for all those who are ambitious to become 'Data Analysts' in near future. This is a must learn course for professionals from Mathematics, Statistics or Economics background and interested in learning Business Analytics. - - - - - - - - - - - - - - - - Why learn Data Analytics with R? The Data Analytics with R training certifies you in mastering the most popular Analytics tool. "R" wins on Statistical Capability, Graphical capability, Cost, rich set of packages and is the most preferred tool for Data Scientists. Below is a blog that will help you understand the significance of R and Data Science: Mastering R Is The First Step For A Top-Class Data Science Career Having Data Science skills is a highly preferred learning path after the Data Analytics with R training. Check out the upgraded Data Science Course For more information, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free). Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 42341 edureka!
Microarray affymatrix data Analysis using R
 
09:16
Microarray affymatrix data Analysis using R studio.